SCATTERING OF AN ACOUSTIC PLANE WAVE BY A CORRUGATED CYLINDER

P. Hillion
Institut Henri Poincaré, 86bis Route de Croissy, F-78110 Le Vésinet, France

(Received 24 November 1999, and in final form 22 May 2000)

An incident time harmonic scalar wave ψ_{i} impinging on a cylindrical surface S gives rise to a time harmonic scattered wave ψ_{s} and the total field $\psi=\psi_{i}+\psi_{s}$ is solution of the Helmholtz equation in the domain D surrounding S,

$$
\begin{equation*}
\Delta \psi+k^{2} \psi=0 \tag{1}
\end{equation*}
$$

where k is the wave number of the incident field. In addition, ψ satisfies some boundary condition on S. To investigate the properties of the scattered wave, a versatile technique, with many applications to different configurations of cylindrical surfaces [1, 2], consists in expanding ψ_{i} and ψ_{s} in series of Bessel and of Hankel functions and in matching the coefficients of these expansions to satisfy the boundary condition on S.

A different point of view is adopted, upon considering that one has in fact to solve a boundary value problem of Helmholtz's equation for which integral equations with Green functions as kernels have been developed [3]. A circular cylinder is considered with axis along $o z$ and radius a (see Figure 1) and $\psi_{i}=\exp (\mathrm{i} k x)$ with time-dependence $\exp (\mathrm{i} \omega t)$. So, one has to deal with a two-dimensional (2D) problem and can use the cylindrical co-ordinates $\mathbf{r}=(r, \phi)$. S is assumed perfectly reflecting and smooth so that ψ and G satisfy on S the Neumann boundary conditions

$$
\begin{equation*}
\left[\partial_{r} \psi(\mathbf{r})\right]_{r=a}=0, \quad\left[\partial_{r} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r=a}=0 \tag{2}
\end{equation*}
$$

but one is mainly interested in a weakly corrugated perfectly conducting cylinder to be defined later. For the boundary conditions (2), the conventional integral equation of the 2D-Helmholtz equation [4,5] due to Weber [6] takes the simple form

$$
\begin{equation*}
\psi(\mathbf{r})=-\int_{0}^{2 \pi}-\mathrm{d} \phi^{\prime}\left[\psi\left(\mathbf{r}^{\prime}\right) \partial_{r^{\prime}} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a} \quad r \geqslant a . \tag{3}
\end{equation*}
$$

To get the Green function satisfying equation (2), one starts with the Green function $G^{o}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ for the un-bounded 2D domain which is [5, 6] the Hankel function $\mathrm{iH}_{0}^{(1)}\left(k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) / 4$ that one writes, by using a well-known expansion of $\mathrm{H}_{0}^{(1)}$ [7] as

$$
\begin{equation*}
4 G^{o}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathrm{i} \sum_{n=-\infty}^{\infty} \mathrm{H}_{n}\left(k r^{\prime}\right) \mathrm{J}_{n}(k r) \exp \left[\mathrm{i} n\left(\phi-\phi^{\prime}\right)\right] \tag{4}
\end{equation*}
$$

Figure 1. Geometric configuration.
in which J_{n} and $\mathrm{H}_{n}\left(=\mathrm{H}_{n}^{(1)}\right)$ are the Bessel and Hankel functions. Then, $G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=$ $G^{o}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+g\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ in which g is a solution of the 2D-Helmholtz equation such that G satisfies equation (2) and

$$
\begin{equation*}
4 g\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\mathrm{i} \sum_{n=-\infty}^{\infty} \mathrm{H}_{n}\left(k r^{\prime}\right) \mathrm{H}_{n}(k r) \mathrm{J}_{n}^{\prime}(k a) / \mathrm{H}_{n}^{\prime}(k a) \exp \left[\mathrm{i} n\left(\phi-\phi^{\prime}\right)\right] . \tag{5}
\end{equation*}
$$

So finally

$$
\begin{equation*}
4 G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\mathrm{i} \sum_{n=-\infty}^{\infty} \mathrm{H}_{n}\left(k r^{\prime}\right)\left[\mathbf{J}_{n}(k r)-\mathrm{H}_{n}(k r) \mathbf{J}_{n}^{\prime}(k a) / \mathrm{H}_{n}^{\prime}(k a)\right] \exp \left[\mathrm{i} n\left(\phi-\phi^{\prime}\right)\right] . \tag{6}
\end{equation*}
$$

And since $\exp (i k x)=\sum_{m} \mathrm{iJ}_{m}(k r) \exp (\mathrm{i} m \phi)$ [5], one proves easily that the solution of the integral equation (3) is

$$
\begin{equation*}
\psi(r)=\sum_{m=-\infty}^{\infty} \mathrm{i}^{m}\left[\mathbf{J}_{m}(k r)-H_{m}(k r) \mathbf{J}_{m}^{\prime}(k a) / \mathrm{H}_{m}^{\prime}(k a)\right] \exp (\mathrm{i} m \phi), \tag{7}
\end{equation*}
$$

which represents the total field for a plane wave $\exp (\mathrm{i} k x)$ incident perpendicularly to the z-axis of a perfectly reflecting circular smooth cylinder [5].

The surface of the cylinder is supposed to be described by a function $b=a+\varepsilon(\phi)$ in which the roughness function $\varepsilon(\phi)$ is small enough to make negligible the ε^{2}-terms. So, one has just to change a into b in relations (2) and (3) so that the integral equation becomes

$$
\begin{equation*}
\psi(\mathbf{r})=-\int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime}\left[\psi\left(\mathbf{r}^{\prime}\right) \partial_{r^{\prime}} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=b}, \quad r \geqslant b \tag{8}
\end{equation*}
$$

To get an approximate solution of the integral equation (8), a first order expansion of the integrand neglecting the ε^{2}-terms is used. So

$$
\begin{equation*}
\left[\psi\left(\mathbf{r}^{\prime}\right)\right]_{r^{\prime}=b}=\left[\psi\left(\mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a}+\varepsilon\left(\phi^{\prime}\right)\left[\partial_{r^{\prime}} \psi\left(r^{\prime}\right)\right]_{r^{\prime}=a}, \quad=\left[\psi_{0}\left(\mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a} \tag{9a}
\end{equation*}
$$

since according to equation (2) the second term is zero, also denoting by $\psi_{0}(\mathbf{r})$ the solution (7) when $\varepsilon=0$ and

$$
\begin{equation*}
\left[\partial_{r^{\prime}} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=b}=\left[\partial_{r^{\prime}} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a}+\varepsilon\left(\phi^{\prime}\right)\left[\partial_{r^{\prime}}^{2} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a} \tag{9b}
\end{equation*}
$$

Substituting equations (9a) and (9b) into equation (8) gives

$$
\begin{equation*}
\psi(\mathbf{r})=\psi_{0}(\mathbf{r})-\int_{0}^{2 \pi}-\mathrm{d} \phi^{\prime}\left[\psi_{0}\left(\mathbf{r}^{\prime}\right) \partial_{r^{\prime}}^{2} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a} \tag{10}
\end{equation*}
$$

since $\left[\psi_{0}\left(\mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a}$ is the solution of the integral equation (3) while according to equation (6)

$$
\begin{equation*}
4\left[\partial_{r^{\prime}}^{2} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a}=\mathrm{i} a k^{2} \sum_{n}\left[\mathrm{~J}_{n}(k r) \mathrm{H}_{n}^{\prime \prime}(k a)-\mathrm{H}_{n}(k r) \mathrm{J}_{n}^{\prime}(k a) \mathrm{H}_{n}^{\prime \prime}(k a) / \mathrm{H}_{n}^{\prime}(k a)\right] \exp \left[\mathrm{i} n\left(\phi-\phi^{\prime}\right)\right] . \tag{11}
\end{equation*}
$$

Now one obtains from equation (7) $\left[\psi\left(\mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a}=\sum_{m} \mathrm{i}^{m} w_{m}(k a) \exp \left(\mathrm{i} m \phi^{\prime}\right) / \mathrm{H}_{m}^{\prime}(k a)$, in which the Wronskian $w_{m}(k a)=J_{m}(k a) \mathrm{H}_{m}^{\prime}(k a)-\mathrm{H}_{m}(k a) J_{m}^{\prime}(k a)=2 \mathrm{i} / \pi k a$ [7], so

$$
\begin{equation*}
\left[\psi\left(\mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a}=(2 \mathrm{i} / \pi k a) \sum_{m} \mathrm{i}^{m} \exp \left(\mathrm{i} m \phi^{\prime}\right) / \mathrm{H}_{m}^{\prime}(k a) . \tag{12}
\end{equation*}
$$

Substituting equations (11) and (12) into equation (9) gives

$$
\begin{gather*}
\left.\psi(\mathbf{r})=\psi_{0}(\mathbf{r})+k / 2 \pi \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime} \varepsilon\left(\phi^{\prime}\right) \sum_{m, n} \mathrm{i}^{m} F_{m n}(a, r) \exp \left[\mathrm{i} n \phi+\mathrm{i}(m-n) \phi^{\prime}\right)\right] \tag{13}\\
F_{m, n}(a, r)=\left[\mathrm{J}_{n}(k r) \mathrm{H}_{n}^{\prime \prime}(k a)-H_{n}(k r) \mathbf{J}_{n}^{\prime}(k a) \mathrm{H}_{n}^{\prime \prime}(k a) / \mathrm{H}_{n}^{\prime}(k a)\right] / \mathrm{H}_{m}^{\prime}(k a) . \tag{13a}
\end{gather*}
$$

Exchanging integration and summation in equation (13) gives finally

$$
\begin{equation*}
\left.\psi(\mathbf{r})=\psi_{0}(\mathbf{r})+(k / 2 \pi) \sum_{m, n} \mathrm{i}^{m} F_{m, n}(a, r) \exp (\mathrm{i} n \phi) \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime} \varepsilon\left(\phi^{\prime}\right) \exp \left[\mathrm{i}(m-n) \phi^{\prime}\right)\right] . \tag{14}
\end{equation*}
$$

For a perfectly reflecting corrugated cylinder, one may write

$$
\begin{equation*}
\varepsilon(\phi)=\rho[2-\exp (\mathrm{i} p \phi)-\exp (-\mathrm{i} p \phi)] \tag{15}
\end{equation*}
$$

in which ρ is a length, small with respect to the radius of the cylinder and p an integer. With equation (15) one obtains from equation (14) the approximation

$$
\begin{align*}
\psi(\mathbf{r})= & \psi_{0}(\mathbf{r})+k \rho \sum_{m}\left[2 F_{m, m}(a, r)-F_{m, m+p}(a, r) \exp (\mathrm{i} p \phi)-F_{m, n-p}(a, r)\right. \\
& \times \exp (-\mathrm{i} p \phi)] \mathrm{i}^{m} \exp (\mathrm{i} m \phi) \tag{16}
\end{align*}
$$

for the total field outside a weakly corrugated perfectly conducting circular cylinder on which the harmonic plane wave $\exp (\mathrm{i} k x)$ impinges.

One could also consider a perfectly conducting rough cylinder with a roughness function depending on a random number p, for instance $\varepsilon(\phi)=\rho \sin (p \phi)$. These results may be generalized to problems with boundary conditions more general than conditions (1), in particular for cylinders with a surface impedance Z so that one has $\left[\partial_{r} \psi+i k Z \psi\right)_{r=a}=0$ and $\left[\partial_{r} G+\mathrm{i} k Z G\right]_{r=a}=0$. The integral equation (3) becomes

$$
\begin{equation*}
\psi(\mathbf{r})=-\int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime}\left[\psi\left(\mathbf{r}^{\prime}\right) \partial_{r^{\prime}} G_{M}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]_{r^{\prime}=a} \tag{17}
\end{equation*}
$$

where G_{M} is obtained from equation (6) by changing $\mathrm{J}_{n}^{\prime}(k a) / \mathrm{H}_{n}^{\prime}(k a)$ into $\Omega \mathrm{J}_{n}(k a) / \Omega \mathrm{H}_{n}(k a)$ in which Ω is the operator $\partial_{r}+\mathrm{ik} Z$.

For instance, if Z depends only on frequency [8] and if the real and imaginary parts R and X of Z can be expanded in even and odd powers, respectively, of ω, as

$$
\begin{equation*}
Z(\omega)=R+\mathrm{i} X=R_{0}+R_{2} \omega^{2}+\cdots+\mathrm{i}\left(X_{1} \omega+X_{3} \omega^{3}+\cdots\right) \tag{18}
\end{equation*}
$$

one would use similar expansions for ψ and G in order to obtain for every power of ω an integral equation and one would solve successively this system of equations.

To obtain a tractable approximation of the scattered wave by a corrugated perfectly reflecting cylinder, one may use the Debye approximations of the Bessel and Hankel functions [7], and provided that $k a$ is large enough, one may truncate the infinite series in equation (15) after M, the integer part of $k a$ [9]. Methods of summing the coefficients have been discussed by Jobst [10].

ACKNOWLEDGMENTS

The author is indebted to a referee for many suggestions to improve this letter and for references [1, 2].

REFERENCES

1. N. C. Skaropoulos and D. P. Chrissoulidis 1999 Journal of Mathematical Physics 40, 156-168. Rigorous application of the stochastic functional method to plane-wave scattering from a random cylindrical surface.
2. D. Givoli 1999 Wave Motion 30, 239-251. Scattering matrix of a nearly circular cylinder.
3. R. Courant and D. Hilbert 1962 Methods of Mathematical Physics. New York: Interscience.
4. D. S. Jones 1984 Acoustic and Electromagnetic Waves. Oxford: Clarendon Press.
5. P. M. Morse and H. Feshbach 1953 Methods of Theoretical Physics. New York: McGraw-Hill.
6. I. N. Sneddon 1957 Elements of Partial Differential Equations. New York: McGraw-Hill.
7. M. Abramowitz and I. A. Stegun 1968 Handbook of Mathematical Functions. New York: Dover.
8. K. Y. Fung, H. Ju and B. P. Tallapragada 2000 American Institute of Aeronautics and Astronautics Journal 38, 30-38. Impedance and its time-domain extensions.
9. P. Debye 1945 Polar Molecules. New York: Dover.
10. G. Jobst 1925 Annalen der Physik 76, 863-970. Näherungsformeln für die Zylinderfunktionen für grosse Werte des Arguments.
