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An incident time harmonic scalar wave t
i
impinging on a cylindrical surface S gives rise

to a time harmonic scattered wave t
s

and the total "eld t"t
i
#t

s
is solution of the

Helmholtz equation in the domain D surrounding S,

Dt#k2t"0, (1)

where k is the wave number of the incident "eld. In addition, t satis"es some boundary
condition on S. To investigate the properties of the scattered wave, a versatile technique,
with many applications to di!erent con"gurations of cylindrical surfaces [1, 2], consists in
expanding t

i
and t

s
in series of Bessel and of Hankel functions and in matching the

coe$cients of these expansions to satisfy the boundary condition on S.
A di!erent point of view is adopted, upon considering that one has in fact to solve

a boundary value problem of Helmholtz's equation for which integral equations with Green
functions as kernels have been developed [3]. A circular cylinder is considered with axis
along oz and radius a (see Figure 1) and t

i
"exp(ikx) with time-dependence exp(iut). So,

one has to deal with a two-dimensional (2D) problem and can use the cylindrical
co-ordinates r"(r, /). S is assumed perfectly re#ecting and smooth so that t and G satisfy
on S the Neumann boundary conditions

[L
r
t (r)]

r/a
"0, [L

r
G(r, r@)]

r/a
"0, (2)

but one is mainly interested in a weakly corrugated perfectly conducting cylinder to be
de"ned later. For the boundary conditions (2), the conventional integral equation of the
2D-Helmholtz equation [4, 5] due to Weber [6] takes the simple form

t (r)"!P
2n

0

!d/@ [t (r@)L
r{
G(r, r@)]

r{/a
r*a. (3)

To get the Green function satisfying equation (2), one starts with the Green function Go(r, r@)
for the un-bounded 2D domain which is [5, 6] the Hankel function iH(1)

0
(k D r!r@ D)/4 that

one writes, by using a well-known expansion of H(1)
0

[7] as

4Go(r, r@)"i
=
+

n/~=

H
n
(kr@)J

n
(kr) exp[in(/!/@)], (4)
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Figure 1. Geometric con"guration.
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in which J
n

and H
n
("H(1)

n
) are the Bessel and Hankel functions. Then, G(r, r@)"

Go (r, r@)#g(r, r@) in which g is a solution of the 2D-Helmholtz equation such that G satis"es
equation (2) and

4g(r, r@)"!i
=
+

n/~=

H
n
(kr@)H

n
(kr)J@

n
(ka)/H@

n
(ka) exp[in(/!/@)]. (5)

So "nally

4G(r, r@)"i
=
+

n/~=

H
n
(kr@)[J

n
(kr)!H

n
(kr)J@

n
(ka)/H@

n
(ka)] exp[in(/!/@)]. (6)

And since exp(ikx)"+
m
iJ

m
(kr) exp(im/) [5], one proves easily that the solution of the

integral equation (3) is

t (r)"
=
+

m/~=

im[J
m
(kr)!H

m
(kr)J@

m
(ka)/H@

m
(ka)] exp(im/), (7)

which represents the total "eld for a plane wave exp(ikx) incident perpendicularly to the
z-axis of a perfectly re#ecting circular smooth cylinder [5].

The surface of the cylinder is supposed to be described by a function b"a#e (/) in
which the roughness function e(/) is small enough to make negligible the e2-terms. So, one
has just to change a into b in relations (2) and (3) so that the integral equation becomes

t (r)"!P
2n

0

d/@[t (r@)L
r{
G(r, r@)]

r{/b
, r*b. (8)

To get an approximate solution of the integral equation (8), a "rst order expansion of the
integrand neglecting the e2-terms is used. So

[t(r@)]
r{/b

"[t(r@)]
r{/a

#e(/@) [L
r{
t (r@)]

r{/a
, "[t

0
(r@)]

r{/a
, (9a)

since according to equation (2) the second term is zero, also denoting by t
0
(r) the solution

(7) when e"0 and

[L
r{
G(r, r@)]

r{/b
"[L

r{
G(r, r@)]

r{/a
#e (/@) [L2

r{
G(r, r@)]

r{/a
. (9b)
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Substituting equations (9a) and (9b) into equation (8) gives

t (r)"t
0
(r)!P

2n

0

!d/@[t
0
(r@)L2

r{
G(r, r@)]

r{/a
, (10)

since [t
0
(r@)]

r{/a
is the solution of the integral equation (3) while according to equation (6)

4[L2
r{
G(r, r@)]

r{/a
"iak2 +

n

[J
n
(kr)HA

n
(ka)!H

n
(kr)J@

n
(ka)HA

n
(ka)/H@

n
(ka)] exp[in(/!/@)] .

(11)

Now one obtains from equation (7) [t(r@)]
r{/a

"+
m
imw

m
(ka) exp(im/@)/H@

m
(ka), in which

the Wronskian w
m
(ka)"J

m
(ka)H @

m
(ka)!H

m
(ka)J@

m
(ka)"2i/nka [7], so

[t (r@)]
r{/a

"(2i/nka) +
m

im exp(im/@)/H@
m
(ka). (12)

Substituting equations (11) and (12) into equation (9) gives

t (r)"t
0
(r)#k/2n P

2n

0

d/@e (/@) +
m,n

imF
mn

(a, r) exp[in/#i (m!n)/@)], (13)

F
m,n

(a, r)"[J
n
(kr)HA

n
(ka)!H

n
(kr)J@

n
(ka)HA

n
(ka)/H@

n
(ka)]/H @

m
(ka). (13a)

Exchanging integration and summation in equation (13) gives "nally

t(r)"t
0
(r)#(k/2n) +

m,n

imF
m,n

(a, r) exp(in/) P
2n

0

d/@e (/@) exp[i(m!n)/@)]. (14)

For a perfectly re#ecting corrugated cylinder, one may write

e (/)"o[2!exp(ip/)!exp(!ip/)], (15)

in which o is a length, small with respect to the radius of the cylinder and p an integer. With
equation (15) one obtains from equation (14) the approximation

t (r)"t
0
(r)#ko +

m

[2F
m,m

(a, r)!F
m,m`p

(a, r) exp(ip/)!F
m,n~p

(a, r)

]exp(!ip/)] im exp(im/) (16)

for the total "eld outside a weakly corrugated perfectly conducting circular cylinder on
which the harmonic plane wave exp(ikx) impinges.

One could also consider a perfectly conducting rough cylinder with a roughness function
depending on a random number p, for instance e (/)"o sin(p/). These results may be
generalized to problems with boundary conditions more general than conditions (1), in
particular for cylinders with a surface impedance Z so that one has [L

r
t#ikZt)

r/a
"0 and

[L
r
G#ikZG]

r/a
"0. The integral equation (3) becomes

t (r)"!P
2n

0

d/@[t(r@)L
r{
G

M
(r, r@)]

r{/a
, (17)

where G
M

is obtained from equation (6) by changing J@
n
(ka)/H@

n
(ka) into XJ

n
(ka)/XH

n
(ka) in

which X is the operator L
r
#ikZ.
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For instance, if Z depends only on frequency [8] and if the real and imaginary parts
R and X of Z can be expanded in even and odd powers, respectively, of u, as

Z(u)"R#iX"R
0
#R

2
u2#2#i (X

1
u#X

3
u3#2), (18)

one would use similar expansions for t and G in order to obtain for every power of u an
integral equation and one would solve successively this system of equations.

To obtain a tractable approximation of the scattered wave by a corrugated perfectly
re#ecting cylinder, one may use the Debye approximations of the Bessel and Hankel
functions [7], and provided that ka is large enough, one may truncate the in"nite series in
equation (15) after M, the integer part of ka [9]. Methods of summing the coe$cients have
been discussed by Jobst [10].
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